31DEC

Welcome To Mediterr J Med Res

Manuscripts are accepted for consideration with understanding that they are represent original material and they are not being considered for publication elsewhere. The editors welcome the submission of relevant articles for editorial consideration. Manuscripts and all scientific and professional data should be addressed to Editor-in-Cheif (Fmosherif@yahoo.com).

Mediterranean Journal of Medical Research
http://www.mjpe.periodikos.com.br/article/doi/10.5281/zenodo.17945149

Mediterranean Journal of Medical Research

REVIEW

Artificial Intelligence in pharmaceutical sciences: Transforming drug discovery, formulation, and manufacturing

Syed Faizan Syed Nizamuddin, Maazuddun Ikramuddin, Nakul S. Dhore

Downloads: 1
Views: 143

Abstract

Artificial​‍​‌‍​‍‌​‍​‌‍​‍‌ intelligence, a major feature of machine learning and deep learning, is changing the way pharmaceutical research and development are done by speeding up drug discovery, formulation, stability prediction, and manufacturing processes. Artificial​‍​‌‍​‍‌​‍​‌‍​‍‌ intelligence enables more rapid target identification, chemical space exploration, and de novo molecule design with fewer iterative experimental cycles, lead selection being optimised, and formulation behaviour and stability predicted. Machine learning and generative models are extensively used in early drug discovery for virtual screening, activity prediction, ADMET profiling, and multi, objective lead optimization resulting in development timelines being reduced drastically. In formulation and preformulation, artificial​‍​‌‍​‍‌​‍​‌‍​‍‌ intelligence models are used to predict physicochemical properties, excipient interactions, and process effects leading to a dose form getting designed more efficiently even if it is complex. Stability prediction models are used to identify degradation pathways, moisture, induced changes, and biologics' aggregation thereby helping the formulation to be done early and the regulatory risk to be assessed. Artificial​‍​‌‍​‍‌​‍​‌‍​‍‌ intelligence, assisted process analytical technology and digital twins in manufacturing lead to enhanced real, time monitoring, predictive control, and continuous manufacturing, thus quality and throughput are ensured. The main issues faced are data quality, model explainability, regulatory acceptance, and workforce readiness although the benefits have been demonstrated. The next steps will be the multimodal artificial​‍​‌‍​‍‌​‍​‌‍​‍‌ intelligence integration, foundation models, or self-driving laboratories that will, without any doubt, speed up the process of pharmaceutical innovation even further. Together, artificial​‍​‌‍​‍‌​‍​‌‍​‍‌ intelligence is no more a supplemental tool but rather the main driver of efficiency, quality, and predictability in pharmaceutical ​‍​‌‍​‍‌​‍​‌‍​‍‌sciences.

Keywords

Deep learning, drug discovery, formulation development, machine learning, stability prediction

References

  1. Luisetto M, Ferraiuolo A, Fiazza C, Cabianca L, Edbey K, Mashori GR, Latyshev OY. Artificial intelligence in the pharmaceutical galenic field: A useful instrument and risk consideration. Mediterranean Journal of Medical Research. 2025; 2(1): 10-19. doi: 10.5281/zenodo.15259824
  2. Sherif FM. The future of pharmacy in Libya. Mediterranean Journal of Pharmacy and Pharmaceutical Sciences. 2023; 3(1): 1-2. doi: 10.5281/ zenodo.7771304
  3. Sherif FM. Continuing pharmacy education and training in Libya. Mediterranean Journal of Pharmacy and Pharmaceutical Sciences. 2023; 3(4): 1-2. doi: 10.5281/zenodo.8412162
  4. Vamathevan J, Clark D, Czodrowski P, Dunham I, Ferran E, Lee G, et al. Applications of machine learning in drug discovery and development. Nature Reviews Drug Discovery. 2019; 18(6): 463-477. doi: 10.1038/s41573-019-0024-5
  5. Jiménez-Luna J, Grisoni F, Schneider G. Drug discovery with explainable artificial intelligence. Nature Machine Intelligence. 2020; 2(10): 573-584. doi: 10.1038/s42256-020-00236-4
  6. Yang X, Wang Y, Byrne R, Schneider G, Yang S. Concepts of artificial intelligence for computer-assisted drug discovery. Chemical Reviews. 2019; 119(18): 10520-10594. doi: 10.1021/acs.chemrev.8b00728
  7. Lee SL, O’Connor TF, Yang X, Cruz CN, Chatterjee S, Madurawe RD, et al. Modernizing pharmaceutical manufacturing: From batch to continuous production. Journal of Pharmaceutical Innovation. 2015; 10(3): 191-199. doi: 10.1007/s12247-015-9215-8
  8. Schneider G. Automating drug discovery. Nature Reviews Drug Discovery. 2018; 17(2): 97-113. doi: 10.1038/nrd. 2017.232
  9. Zhavoronkov A, Ivanenkov YA, Aliper A, Veselov MS, Aladinskiy VA, Aladinskaya AV, et al. Deep learning enables rapid identification of potent DDR1 kinase inhibitors. Nature Biotechnology. 2019; 37(9): 1038-1040. doi: 10.1038/ s41587-019-0224-x
  10. Jiménez J, Doerr S, Martínez-Rosell G, Ross AS, De Fabritiis G. DeepSite: protein-binding site predictor using 3D convolutional neural networks. Bioinformatics. 2017; 33(19): 3036-3042. doi: 10.1093/bioinformatics/btx350
  11. Chen H, Engkvist O, Wang Y, Olivecrona M, Blaschke T. The rise of deep learning in drug discovery. Drug Discovery Today. 2018; 23(6): 1241-1250. doi: 10.1016/j.drudis.2018.01.039
  12. Fu C, Chen Q. The future of pharmaceuticals: Artificial intelligence in drug discovery and development. Journal of Pharmaceutical Analysis. 2025;15(8):101248. doi: 10.1016/j.jpha.2025.101248
  13. Sumitomo Dainippon Pharma and exscientia joint development new drug candidate created using Artificial Intelligence (AI) begins clinical study. 2020. Sumitomo Pharma. (n.d.-a). access on 15/12/2025. https://www.sumitomo-pharma.com/news/20200130.html
  14. Mak KK, Pichika MR. Artificial intelligence in drug development: present status and future prospects. Drug Discovery Today. 2019; 24(3):773-780. doi: 10.1016/j.drudis.2018.11.014
  15. Hayashi Y, Nakano Y, Marumo Y, Kumada S, Okada K, Onuki Y. A data-driven approach to predicting tablet properties after accelerated test using raw material property database and machine learning. Chemical and Pharmaceutical Bulletin (Tokyo). 2023; 71(6): 406-415. doi: 10.1248/cpb.c22-00538
  16. Han Y, Kim DH, Pack SP. Nanomaterials in drug delivery: Leveraging artificial intelligence and big data for predictive design. International Journal of Molecular Sciences. 2025; 26(22): 11121. doi: 10.3390/ijms262211121
  17. Kang S, Kim M, Sun J, Lee M, Min K. Prediction of protein aggregation propensity via data-driven approaches. ACS Biomaterials Science and Engineering Journal. 2023; 9(11): 6451-6463. doi: 10.1021/ acsbiomaterials.3c01001
  18. Ajdarić J, Ibrić S, Pavlović A, Ignjatović L, Ivković B. Prediction of drug stability using deep learning approach: Case study of esomeprazole 40 mg freeze-dried powder for solution. Pharmaceutics. 2021; 13(6): 829. doi: 10.3390/pharmaceutics13060829
  19. Vora LK, Gholap AD, Jetha K, Thakur RRS, Solanki HK, Chavda VP. Artificial intelligence in pharmaceutical technology and drug delivery design. Pharmaceutics. 2023; 15(7): 1916. doi: 10.3390/pharmaceutics15071916
  20. Kalejaye L, Wu IE, Terry T, Lai PK. DeepSP: Deep learning-based spatial properties to predict monoclonal antibody stability. Computational and Structural Biotechnology Journal. 2024; 23: 2220-2229. doi: 10.1016/j.csbj.2024.05. 029
  21. Mahmoud D, Magolon M, Boer J, Elbestawi MA, Mohammadi MG. Applications of machine learning in process monitoring and controls of L-PBF additive manufacturing: A review. Applied Sciences. 2021; 11(24): 11910. doi: 10.3390/app112411910
  22. Chen Y, Yang O, Sampat C, Bhalode P, Ramachandran R, Ierapetritou M. Digital twins in pharmaceutical and biopharmaceutical manufacturing: A literature review. Processes. 2020; 8(9): 1088. doi: 10.3390/pr8091088
  23. Wasalathanthri DP, Shah R, Ding J, Leone A, Li ZJ. Process analytics 4.0: A paradigm shift in rapid analytics for biologics development. Biotechnology Progress. 2021; 37(4): e3177. doi: 10.1002/btpr.3177
  24. Bender A, Cortés-Ciriano I. Artificial intelligence in drug discovery: What is realistic, what are illusions? Part 1: Ways to make an impact, and why we are not there yet. Drug Discovery Today. 2021; 26(2): 511-524. doi: 10.1016/j.drudis.2020.12.009
  25. Gholap AD, Uddin MJ, Faiyazuddin M, Omri A, Gowri S, Khalid M. Advances in artificial intelligence for drug delivery and development: A comprehensive review. Computers in Biology and Medicine. 2024; 178: 108702. doi: 10.1016/j.compbiomed.2024.108702

Submitted date:
10/27/2025

Reviewed date:
12/09/2025

Accepted date:
12/15/2025

69408c04a9539541ee53a1b3 mjpe Articles
Links & Downloads

Mediterr J Med Res

Share this page
Page Sections