31DEC

Welcome To Mediterr J Med Res

Manuscripts are accepted for consideration with understanding that they are represent original material and they are not being considered for publication elsewhere. The editors welcome the submission of relevant articles for editorial consideration. Manuscripts and all scientific and professional data should be addressed to Editor-in-Cheif (Fmosherif@yahoo.com).

Mediterranean Journal of Medical Research
http://www.mjpe.periodikos.com.br/article/doi/10.5281/zenodo.17525979

Mediterranean Journal of Medical Research

Review

Chemistry, pharmacology, and chiral separation of proton pump inhibitor drugs

Khadidja Addadi, Nasser Belboukhari, Khaled Sekkoum

Downloads: 0
Views: 53

Abstract

A chiral sulfoxide is an important group in many bioactive molecules, and its absolute configuration often has substantial effects on its biological activity. Compounds that contain tri-coordinated sulfur atoms in a pyramidal structure can exist in different optically active forms. Omeprazole is a highly successful sulfoxide drug and the first registered substance in the proton pump inhibitor class, whose chirality may significantly impact its interaction with biological targets. The R-enantiomer of omeprazole is rapidly metabolized. In contrast, the clearance of the S-enantiomer occurs at a much slower rate. Viewing this, further attention should be paid to the pharmacological and toxicological studies of individual enantiomers of chiral drugs, and thus led to an exigent demand for enantioseparation.

Keywords

Absolute configuration, chiral drug, enantioseparation, sulfoxide drug, omeprazole 

References

  1. Han J, Soloshonok VA, Klika KD, Drabowicz J, Wzorek A. Chiral sulfoxides: Advances in asymmetric synthesis and problems with the accurate determination of the stereochemical outcome. Chemical Society. Review. 2018; 47(4): 1307-1350. doi: 10.1039/c6cs00703a
  2. Spence J. Synthesis, structure, and reactivity of omeprazole and related compounds. no. August 2018, [online]. Available: https://etheses.whiterose.ac.uk/22178/
  3. Wojaczyńska E, Wojaczyński J. Sulfoxides in medicine. Current Opinion in Chemical Biology. 2023; 76(1-9): 102340. doi: 10.1016/j.cbpa.2023.102340
  4. Bentley R. Role of sulfur chirality in the chemical processes of biology. Chemical Society Review. 2005; 34(7): 609-624. doi: 10.1039/b418284g
  5. Peng T, Cheng X, Chen Y, Yang J. Sulfoxide reductases and applications in biocatalytic preparation of chiral sulfoxides: A mini-review. Frontiers in Chemistry. 2021; 9: 1-9. doi: 10.3389/fchem.2021.714899
  6. Young A. Chiral sulfoxides: Synthesis and utility. 2008; 1-8. University of Illinois Urbana-Champaign, USA.
  7. de Figueiredo S, Binda N, Nogueira-Machado J, Vieira-Filho S, Caligiorne R. The antioxidant properties of organosulfur compounds (Sulforaphane). Recent Patents on Endocrine, Metabolism and Immune Drug Discovery. 2015; 9(1): 24-39. doi: 10.2174/1872214809666150505164138
  8. Garcia-Oliveira P, Otero P, Pereira AG, Chamorro F, Carpena M, Echave J, et al. Status and challenges of plant-anticancer compounds in cancer treatment. Pharmaceuticals. 2021; 14(2): 1-28. doi: 10.3390/ph14020157
  9. Bansal M, Singh N, Pal S, Dev I, Ansari KM. Chemopreventive role of dietary phytochemicals in colorectal cancer, 1st ed. 12. Elsevier B.V, 2018. doi: 10.1016/B978-0-444-64199-1.00004-X
  10. Le Daré B, Ferron PJ, Gicquel T. Toxic effects of amanitins: Repurposing toxicities toward new therapeutics. Toxins (Basel). 2021; 13(6): 1-10. doi: 10.3390/toxins13060417
  11. Lutz C, Simon W, Werner-Simon S, Pahl A, Müller C. Total synthesis of α- and β-amanitin, Angew. Chemie - Int. Ed. 2020; 59(28): 11390-11393. doi: 10.1002/anie.201914935
  12. Zheng C, Lv S, Ye J, Zou L, Zhu K, Li H, Dong Y, Li L. Metabolomic insights into the mechanisms of ganoderic acid: Protection against α-amanitin-induced liver injury. Metabolites. 2023; 13(11): 1164. Metabolites. doi: 10.3390/metabo13111164
  13. Siegert MAJ, Knittel CH, Süssmuth RD. A convergent total synthesis of the death cap toxin α-amanitin. Angew. Chemie - Int. Ed. 2020; 59(14): 5500-5504. doi: 10.1002/anie.201914620
  14. Tavassoli M, Afshari A, Arsene AL, Mégarbane B, Dumanov J, Paoliello MMB, et al. Toxicological profile of Amanita virosa - A narrative review. Toxicology Reports. 2019; 6. 2018. 143-150. doi: 10.1016/j.toxrep. 2019.01.002
  15. Tomoe H. Dimethyl sulfoxide: A review of pharmacology and clinical effect on interstitial cystitis/bladder pain syndrome. Continence. 2023; 8: 101058. doi: 10.1016/j.cont.2023.101058
  16. Santos NC, Figueira-Coelho J, Martins-Silva J, Saldanha C. Multidisciplinary utilization of dimethyl sulfoxide: Pharmacological, cellular, and molecular aspects. Biochemical Pharmacology. 2003; 65(7): 1035-1041. doi: 10.1016/S0006-2952(03)00002-9
  17. Jacob SW, de la Torre JC. Pharmacology of dimethyl sulfoxide in cardiac and CNS damage. Pharmacology Reports. 2009; 61(2): 225-235. doi: 10.1016/S1734-1140(09)70026-X
  18. Robertson P, Hellriegel ET. Clinical pharmacokinetic profile of modafinil. Clinical Pharmacokinetics. 2003; 42(2): 123-137. doi: 10.2165/00003088-200342020-00002
  19. Minzenberg MJ, Carter CS. Modafinil: A review of neurochemical actions and effects on cognition. Neuropsychopharmacology. 2008; 33(7): 1477-1502. doi: 10.1038/sj.npp.1301534
  20. Ramachandra B. A critical review of properties of modafinil and analytical, bioanalytical methods for its determination. Critical Review in Analytical Chemistry. 2016; 46(6): 482-489. doi: 10.1080/10408347.2016. 1153948
  21. Darwish M, Kirby M, Hellriegel ET, Robertson P. Armodafinil and modafinil have substantially different pharmacokinetic profiles despite having the same terminal half-lives: Analysis of data from three randomized, single-dose, pharmacokinetic studies. Clinical Drug Investigation. 2009; 29(9): 613-623. doi: 10.2165/ 11315280-000000000-00000
  22. Davies N, Watson MS. Clinical pharmacokinetics of sulindac: A dynamic old drug. Clinical Pharmacokinetics. 1997; 32(6): 437-459. doi: 10.2165/00003088-199732060-00002
  23. Klibanov OM, Williams SH, Iler CA. Cenicriviroc, an orally active CCR5 antagonist for the potential treatment of HIV infection. Current Opinion in Investigational Drugs. 2010; 11(8): 940-950.
  24. Awasthi A, Rahman MA, Bhagavan Raju M. Synthesis, in silico studies, and in vitro anti-inflammatory activity of novel imidazole derivatives targeting p38 MAP Kinase. ACS Omega. 2023; 8(20): 17788-17799. doi: 10.1021/acsomega.3c00605
  25. Li Q, Liu Y, Yang M, Jin L, Wu Y, Tang L, He L, Wu D, Zhang Z. Mechanism of Radix Scutellariae in the treatment of influenza: A based on network pharmacology and molecular docking. Annals of Translational Medicine. 2022; 10(6): 351. doi: 10.21037/atm-22-1176
  26. Tanaka M, Yamazaki H, Hakusui H. Direct HPLC separation of enantiomers of pantoprazole and other benzimidazole sulfoxides using cellulose‐based chiral stationary phases in reversed‐phase mode. Chirality. 1995; 7(8): 612-615. doi: 10.1002/chir.530070810
  27. Gallinella B, Ferretti R, Zanitti L, Sestili I, Mosca A, Cirilli R. Comparison of reversed-phase enantioselective HPLC methods for determining the enantiomeric purity of (S)-omeprazole in the presence of its related substances. Journal of Pharmaceutical Analysis. 2016; 6(2): 132-136. doi: 10.1016/j.jpha.2015.11.001
  28. Chennuru LN, Choppari T, Duvvuri S, Dubey PK. Enantiomeric separation of proton pump inhibitors on new generation chiral columns using LC and supercritical fluid chromatography. Journal of Separation. Sciences. 2013; 36(18): 3004-3010. doi: 10.1002/jssc.201300419
  29. Papp LA, Foroughbakhshfasaei M, Fiser B, Horváth P, Kiss E, Sekkoum K. Reversed-phase HPLC enantioseparation of pantoprazole using a teicoplanin aglycone stationary phase-Determination of the enantiomer elution order using HPLC-CD analyses. Chirality. 2020; 32(2): 158-167. doi: 10.1002/chir.23146
  30. Papp LA, Hancu G, Gyéresi Á, Kelemen H, Szabó ZI, Noszál B, Dubský P, Tóth G. Chiral separation of lansoprazole and rabeprazole by capillary electrophoresis using dual cyclodextrin systems. Electrophoresis. 2019; 40(21): 2799-2805. doi: 10.1002/elps.201900107
  31. Al-badr AA. Chapter 4 - Omeprazole. Profiles of drug substances, Excipients, and Related Methodology. 2010; 35: 151-262. doi: 10.1016/S1871-5125(10)35004-7
  32. Horn J. The proton-pump inhibitors: Similarities and differences. Clinical Therapeutics. 2000; 22(3): 266-280. doi: 10.1016/S0149-2918(00)80032-6
  33. Mullin JM, Gabello M, Murray LJ, Farrell CP, Bellows J, Wolov KR, et al. Proton pump inhibitors: actions and reactions. Drug Discovery Today. 2009; 14(13-14): 647-660. doi: 10.1016/j.drudis.2009.03.014
  34. Sachs G, Shin JM, Howden CW. The clinical pharmacology of proton pump inhibitors. Alimentary Pharmacology and Therapeutics. 2006; 23(S2): 2-8. doi: 10.1111/j.1365-2036.2006.02943.x
  35. Shin JM, Sachs G. Pharmacology of proton pump inhibitors (PPIs). Current Gastroenterology Reports. 2008; 10(6): 528-534. doi: 10.1007/s11894-008-0098-
  36. Huang JQ, Hunt RH. Pharmacological and pharmacodynamic essentials of H2-receptor antagonists and proton pump inhibitors for the practising physician. Best Practice Research Clinical Gastroenterology. 2001; 15(3): 355-370. doi: 10.1053/bega.2001.0184
  37. Litwack G. Membrane Transport. 2008. In: Human Biochemistry and Disease. AP Publisher, China. ISBN-13: 978-0124528154
  38. Waller DG, Sampson AP. Dyspepsia and peptic ulcer disease. Medical Pharmacology and Therapeutics. 2018; 401-410. doi: 10.1016/b978-0-7020-7167-6.00033-6
  39. Robinson M, Horn J. Clinical pharmacology of proton pump inhibitors: What the practising physician needs to know. Drugs. 2003; 63(24): 2739-2754. doi: 10.2165/00003495-200363240-00004
  40. Besancon M, Simon A, Sachs G, Shin JM. Sites of reaction of the gastric H,K-ATPase with extracytoplasmic thiol reagents. Journal of Biological Chemistry. 1997; 272(36): 22438-22446. doi: 10.1074/jbc.272.36.22438
  41. Shin JM, Kim N. Pharmacokinetics and pharmacodynamics of the proton pump inhibitors. Journal of Neuro-gastroenterology and Motility. 2013; 19(1): 25-35. doi: 10.5056/jnm.2013.19.1.25
  42. Welage LS. Pharmacologic properties of proton pump inhibitors. Pharmacotherapy. 2003; 23(10 Pt2): 74S-80S. doi: 10.1592/phco.23.13.74S.31929
  43. Bonato PS, Paias FO. Enantioselective analysis of omeprazole in pharmaceutical formulations by chiral high-performance liquid chromatography. Journal of the Brazilian Chemical Society. 2004; 15(2): 318-323. doi: 10.1590/S0103-50532004000200025 
  44. Zanitti L, Ferretti R, Gallinella B, La Torre F, Sanna ML, Mosca A, Cirilli R. Direct HPLC enantioseparation of omeprazole and its chiral impurities: Application to the determination of enantiomeric purity of esomeprazole magnesium trihydrate. Journal of Pharmaceutical and Biomedical Analysis. 2010; 52(5): 665-671. doi: 10.1016/ j.jpba.2010.02.021
  45. Vyas S, Patel A, Ladva K, Joshi H, Bapodra A. Development and validation of a stability indicating method for the enantioselective estimation of omeprazole enantiomers in the enteric-coated formulations by high-performance liquid chromatography. Journal of Pharmaceutical Bioallied Sciences. 2011; 3(2): 310-314. doi: 10.4103/0975-7406.80766
  46. Ferretti R, Zanitti L, Casulli A, Cirilli R. Green high-performance liquid chromatography enantioseparation of lansoprazole using a cellulose-based chiral stationary phase under ethanol/water mode. Journal of Separation Science. 2016; 39(8): 1418-1424. doi: 10.1002/jssc.201501329
  47. Rahman A, Haque MR, Sultan MZ, Rahman MM, Rashid MA. Enantiomeric determination of omeprazole and esomeprazole by a developed and validated chiral HPLC method and stability studies by microthermal analysis. Dhaka University Journal of Pharmaceutical Sciences. 2017; 16(2): 221-233. doi: 10.3329/dujps.v16i2.35261
  48. Xiong F, Yang BB, Zhang J, Li L. Enantioseparation, stereochemical assignment and chiral recognition mechanism of sulfoxide-containing drugs. Molecules. 2018; 23(10): 2680. doi: 10.3390/molecules23102680
  49. Hamache T, Belboukhari N, Sekkoum K, Ghouizi M. Chiral screening approach of atorvastatin diastereomers by HPLC method. Mediterranean Journal of Pharmacy and Pharmaceutical Sciences. 2024; 4(1): 121-125. doi: 10.5281/zenodo.10814722
  50. Cârcu-Dobrin M, Hancu G, Papp LA, Fülöp I, Kelemen H. Development of a chiral capillary electrophoresis method for the enantioseparation of verapamil using cyclodextrins as chiral selectors and experimental design optimization. Symmetry (Basel). 2021; 13(11): 2186; doi: 10.3390/sym13112186
  51. Addadi K, Sekkoum K, Belboukhari N, ALOthman ZA, Aljuwayid AM, Sillanpää M, et al. Enantio-resolution of some chiral sulfoxide drugs on amylose and cellulose-based stationary phases: Elution order, absolute configuration and chiral mechanism determination. Microchemical Journal. 2023; 193: 109019. doi. 10.1016/ j.microc.2023.109019

Submitted date:
02/01/2025

Reviewed date:
10/17/2025

Accepted date:
10/27/2025

690a4277a953955e6f57b8a6 mjpe Articles
Links & Downloads

Mediterr J Med Res

Share this page
Page Sections