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Abstract: The widespread utility of unsaturated 2-cyanoacetamide derivatives in medicinal chemistry is fixed, 

as they serve as essential building blocks for synthesizing bioactive compounds, thereby facilitating the 

development of innovative pharmaceutical agents. This study presents an efficient and high-yielding synthetic 

approach to novel arylidene cyanoacetamide derivatives via Knoevenagel condensation. A series of N-

substituted cyanoacetamides (2, 3, 4, and 5) were first prepared by reacting ethyl cyanoacetate (1) with 

cyclohexylamine, morpholine, piperidine, and piperazine. These intermediates were subsequently condensed 

with various aromatic aldehydes including cinnamaldehyde (6), 3-(4-dimethylamino) phenyl acrylaldehyde 

(7), and 4-(dimethylamino) benzaldehyde (8) using trimethylamine as a base catalyst. The reaction afforded 

the target arylidene derivatives (I-VI) excellent yields (70.0-90.0%) under mild and straightforward 

conditions. All compounds were fully characterized by ¹H NMR, ¹³C NMR, and mass spectrometry. This 

method provides a practical and scalable route to structurally diverse arylidene cyanoacetamides, which hold 

potential for applications in medicinal chemistry (e.g., as bioactive scaffolds) and materials science (e.g., as 

optoelectronic materials). 

 

Introduction 

Cyanoacetamides represent a highly versatile class of organic compounds that serve as key precursors in the 

synthesis of numerous pharmacologically active molecules and agrochemicals [1]. Their structural framework, 

characterized by the presence of reactive cyano and carbonyl functional groups, enables efficient 

transformations with bidentate reagents, facilitating the construction of diverse heterocyclic systems. 

Additionally, the active methylene group in these compounds participates in condensation and substitution 

reactions, further enhancing their utility as intermediates for the assembly of nitrogen-containing heterocycles 

[2-8]. Earlier reviews by Fadda et al. [1] and Litvinov [9] systematically documented the synthetic applications 

of cyanoacetamides. Building upon their foundational work, this review provides an updated and 

comprehensive survey of recent advancements in the utilization of cyanoacetamides for the synthesis of 

monocyclic five- and six-membered heterocycles, as well as, fused heterocyclic systems. Furthermore, it 

briefly outlines contemporary methodologies for the preparation of cyanoacetamides, including reactions of 

aryl or heteroaryl amines with alkyl cyanoacetates, cyanoacetic acid, or 3-oxopropanenitriles under varying 

conditions. Alternative synthetic routes, such as the treatment of amines with chloroacetyl chloride followed 

which , Creative Commons Attribution License access article is distributed under the-2025. This open ©Copyright

permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 
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by potassium cyanide, as well as condensations involving butylamine, potassium cyanate, cyanoacetic acid, 

and acetic anhydride, are also discussed [10]. 

The design and synthesis of novel cyanoacetamide-based derivatives continue to attract significant interest in 

both organic and medicinal chemistry. These compounds readily undergo Knoevenagel condensation with 

aldehydes, yielding arylidene derivatives that exhibit promising biological and physicochemical properties 

[11-12]. Such structural motifs hold considerable potential in pharmaceutical research, where they may serve 

as bioactive agents, as well as in materials science, owing to their tunable optical and electronic properties for 

advanced optoelectronic applications [13]. This study aims to highlight recent developments in this field, 

emphasizing the synthetic versatility and broad applicability of cyanoacetamides in heterocyclic chemistry. 

 

Material and methods 

All chemicals were purchased from Sigma Aldrich (St. Louis, MO, USA) and were used as received. Reactions 

were monitored on TLC using different rations from (methanol/hexane), (chloroform/hexane) and dichloro-

methane. All spectroscopic analysis of prepared compounds was conducted at the National Research Centre 

at Douqi. 1H NMR spectra were carried out on a Bruker 500 MHz with chemical shift (δ) expressed in ppm 

downfield from tetramethyl silane as an internal standard (δ TMS=0) using CDCl3 and DMSO-d6 as solvents. 

The multiplicity of the signal is as follows: s (Singlet), d (Doublet), t (Triplet), q (Quartet), m (Multiplet). 13C-

NMR was measured on a Bruker 125 MHz with internal reference TMS δ=0. Mass spectroscopy was done 

using direct inlet in deuterochloroform (CDCl3), unit (DI-50) of Shimadzu GC/MS-QP5050A, Ionization 

mode: EI, Ionization voltage: 70ev. Melting points (m.p.) of the synthesized compounds were measured in 

capillary tubes using a Stuart scientific apparatus and were uncorrected. 

 

Synthetic procedure 

Synthesis of cyanoacetamide: A mixture of ethyl cyanoacetate (0.01 mol) and a heterocyclic amine (primary 

or secondary, 0.01 mol) was placed in a 100 mL beaker and stirred at room temperature overnight without the 

addition of a catalyst. The resulting solid was collected by filtration, washed with diethyl ether, and dried 

under a vacuum to afford a white precipitate. The crude product was recrystallized from ethanol to yield the 

pure compounds (2, 3, 4, 5). 

Synthesis of arylidienamide: Cyanoacetamide (0.01 mol) was dissolved in absolute ethanol, followed by the 

dropwise addition of trimethylamine. An aromatic aldehyde (0.01 mol) was then introduced into the reaction 

mixture with continuous stirring at room temperature. The reaction was completed within approximately 15 

min, yielding a colored precipitate. The resulting product was isolated by filtration, washed with ethanol, and 

subsequently recrystallized from ethanol to afford compounds (I-VI). 

 

Results  

2-Cyano-N-cyclohexylacetamide (2): C9H14N2O (166.11 g/mol). 90.0% yield as a white solid m.p. 127-129°C. 
1H-NMR (CDCl3): δ: 1.22 (m, 3H, H 4a, H5a, H6a), 1.37 (m, 2H, H4e, H6e), 1.6 (m, 1H, H5e), 1.7 (dt, 2H, H1a, 

H3a), 1.9 (dt, 2H, H1e, H3e), 3.3 (s, 2H, H10), 3.7 (m, 1H, H2), 6.2 (s, 1H, NH). 13C-NMR (CDCl3): δ: 24.8 (C4, 

C6), 25.4 (C 5), 26.2 (C10), 32.5 (C1, C3), 49.5 (C2), 115.4 (C11), 161.2 (C8). 

3-Morpholino-3-oxopropanenitrile (3): C7H10N2O2 (154.17 g/mol). 75.0% yield as a white solid m.p. 86-

88°C. 1H-NMR (CDCl3): δ=3.45 (t, 2H, H1a, H3a), 3.49 (s, 2H, H9), 3.62 (t, 2H, H1e, H3e), 3.68 (t, 2H, H4a, 

H6a), 3.71 (t, 2H, H4e, H6e). 13C-NMR (CDCl3): δ=24.9 (C9), 42.7 (C1a, C3a), 46.6 (C1e, C3e), 66.3 (C4a, C6a), 

66.5 (C4e, C6e), 114.4 (C10), 160.8 (C7). 

3-Oxo-3-(piperidin-1-yl) propanenitrile (4): C8H12N2O (152.2 g/mol). 80.0% yield as a white solid m.p. 78-

80°C. 1H-NMR (CDCl3): δ=1.5 (tt, 2H, H4a, H6a), 1.6 (tt, 4H, H5, H4e, H6e), 3.3 (t, 2H, H1a, H3a), 3.5 (s, 2H, 

H9), 3.6 (t, 2H, H1e, H3e). 13C-NMR (CDCl3): δ=24.0 (C9), 25.1 (C5), 26.0(C4, C6), 43.4 (C1), 47.3 (C3), 114.8 

(C10), 160.2 (C7).  
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3-Oxo-3-(piperazin-1-yl) propanenitrile (5): C7H11N3O (153.19 g/mol). 70.0% yield as a white solid m.p. 248-

250°C. 1H-NMR (DMSO-d6): δ=2.1 (s, 1H, NH), 3.29-3.50 (m, 8H, H4, H6, H9, H1a, H3a), 4.2 (t, 2H, H1e, H3e). 
13C-NMR (DMSO-d6): δ=25.4 (C9), 41.7 (C4, C6), 45.6 (C1, C3), 116.6 (C10), 162.3 (C7).  

2-Cyano-N-cyclohexyl-5-(4-(dimethylamino) phenyl) penta-2,4- dienamide (I): C20H25N3O (323.4 g/mol). 

75.0% yield as a brown solid m.p. 196-198°C. 1H-NMR (CDCl3): δ=1.22 (tt, 3H, H4a, H5a, H6a), 1.37 (tt, 2H, 

H4a, H6a), 1.6 (tt, 1H, H5e), 1.7 (dt, 2H, H1a, H3a), 1.9 (dt, 2H, H1e, H3e) , 3.0 (s, 6H, H21, H22), 3.9 (m, 1H, H2), 

5.9 (s, H, NH), 6.7 (d, 2H, H16, H18), 7.0 (dd, 1H, H12), 7.1 (d, 1H, H13), 7.4 (d, 2H, H15, H19), 8.0 (d, 1H, H11). 
13C-NMR (CDCl3): δ=24.9 (C4, C6), 25.6 (C5), 33.1 (C1, C3), 40.4 (C21, C22), 49.2 (C2), 101.0 (C10), 112 (C16, 

C18), 117 (C23), 118.1 (C12), 123 (C14), 130 (C15, C19), 148 (C13), 151 (C17), 154 (C11), 160 (C8). MS (EI): 

m/z=323 (100%), 240 (10.0%), 224 (21.0%), 196 (35.0%). 

5-(4-(dimethylamino) phenyl)-2-(morpholine-4-carbonyl) penta-2,4-dienenitrile (II): C18H21N3O2 (311.4 

g/mol). 70.0% yield as a dark red solid m.p. 138-140°C. 1H-NMR (CDCl3): δ=3.1 (s, 6H, H21, H22), 3.6-3.72 

(t, 8H, H4, H6, H1, H3), 6.70 (d, 2H, H15, H17), 7.0 (dd, d, 2H, H11, H12), 7.45 (d, 2H, H14, H18), 7.72 (d, 1H, 

H10). 13C-NMR (CDCl3): δ=40.23 (C20, C21), 40.50 (C1, C3), 66 (C4, C6), 101.7 (C9), 112.5 (C15, C17), 116 

(C22), 118 (C11), 124 (C13), 130 (C14, C18), 148 (C12), 152 (C16), 156 (C10), 164 (C7). MS (EI): m/z=311 

(77.0%), 225 (79.0%), 196 (100%), 152 (24.0%), 114 (4.0%). 

5-(4-(dimethylamino) phenyl)-2-(piperidine-1-carbonyl) penta-2,4-dienenitrile (III): C19H23N3O (309.41 

g/mol). 74.0% yield as a purple solid m.p. 143-145°C. 1H-NMR (CDCl3): δ=1.62 (m, 6H, H4, H5, H6), 3.02 (s, 

6H, H20, H21), 3.57 (t, 4H, H1, H3), 6.7 (d, 2H, H15, H17), 7.03 (dd, d, 2H, H11, H12), 7.4 (d, 2H, H14, H18), 7.6 

(d, 1H, H10). 13C-NMR (CDCl3): δ=24.5 (C4, C6), 25.9 (C5), 40 (C20, C21, C1, C3), 103 (C9), 112 (C15, C17), 

116 (C22), 119 (C11), 124 (C13), 130 (C14, C18), 147 (C12), 152 (C16), 155 (C10), 163 (C7). MS (EI): m/z=309 

(100%), 224.7 (395), 197 (29.0%), 147 (5.0%). 

2-Cyano-N-cyclohexyl-5-phenylpenta-2,4-dienamide (IV): C18H20N2O (280.4 g/mol). 90.0% yield as a white 

solid m.p. 170-172°C.  1H-NMR (CDCl3): δ=1.24 (m, 3H, H4a, H5a, H6a), 1.37 (m, 2H, H4e, H6e), 1.7 (m, 1H, 

H5e), 1.75 (dt, 2H, H1a, H3a), 1.95 (dt, 2H, H1e, H3e), 3.8 (m, 1H, H2), 6.02 (s, 1H, NH), 7.2 (d, 2H, H16, H18), 

7.4 (m, 3H, H12, H13, H17), 7.6 (d, 2H, H15, H19), 8.4 (d, 1H, H11). 13C-NMR (CDCl3): δ=24.9 (C4, C6), 25.5 

(C5), 32.96 (C1, C3), 49.4 (C2), 106 (C10), 116 (C20), 123 (C12), 128 (C15, C19), 129 (C17), 131 (C16, C18), 135 

(C14), 148 (C13), 153 (C11), 159 (C8). MS (EI): m/z = 280 (100%), 196 (48.0%), 181 (53.0%). 

2-Cyano-N-cyclohexyl-3-(4-(dimethylamino) phenyl) acrylamide (V): C18H23N3O (297.18 g/mol). 70.0% 

yield as a light yellow solid m.p. 184-186°C. 1H-NMR (CDCl3): δ=1.2 (m, 3H, H4a, H5a, H6a), 1.4 (m, 2H, H4e, 

H6e), 1.72 (m, 1H, H5e), 1.75 (q, 2H, H1a, H3a), 1.96 (q, 2H, H1e, H3e), 3.0 (s, 6H, H19, H20), 3.89 (m, 1H, H2), 

6.08 (s, 1H, NH), 6.7 (d, 2H, H14, H16), 7.8 (d, 2H, H13, H17), 8.13 (s, 1H, H11). 13C-NMR (CDCl3): δ = 24.9 

(C4, C6), 25.6 (C5), 33 (C1, C3), 40 (C19, C20), 49.4 (C2), 96 (C21), 111 (C14, C16), 119 (C10), 120 (C12), 133 

(C13, C17), 152 (C11), 153 (C15), 160.9 (C8) MS (EI): m/z=297.2 (87%), 214 (100%), 198 (70.0%), 170 (50.0%), 

133 (19.0%), 121 (12.0%). 

3-(4-(dimethylamino) phenyl)-2-(piperidine-1-carbonyl) acrylonitrile (VI): C17H21N3O (283.4 g/mol). 70.0% 

yield as a dark yellow solid m.p. 158-160°C. 1H-NMR (CDCl3): δ=1.65 (m, 6H, H4, H5, H6), 3.05 (s, 6H, H18, 

H19), 3.58 (t, 4H, H1, H3), 6.7 (d, 2H, H13, H15), 7.6 (s, 1H, H10), 7.8 (d, 2H, H12, H16). 13C-NMR (CDCl3): 

δ=24.5 (C4, C6), 25.9 (C5), 40,2 (C1, C3, C18, C19), 99 (C20), 111 (C13, C15), 118 (C9), 120 (C11), 133 (C12, C16), 

152 (C10), 152.6 (C14), 164.5 (C7). MS (EI): m/z=283.4 (100%), 238 (9.0%), 198 (38.0%), 171 (54.0%), 133 

(13.0%), 120 (4.0%). 

 

Discussion 

The synthesis of various heterocycles via an efficient and expedient pathway was achieved through the 

reaction of ethyl cyanoacetate with various amines, predominantly cyclic amines, under solvent-free 

conditions and without external heating. This approach afforded cyanoacetamide derivatives in high yields 

within a short reaction time, as illustrated in Scheme 1.  
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Scheme 1: Synthesis of N-substituted cyanoacetamides (2, 3, 4, and 5) 

 

The subsequent condensation of these cyanoacetamides with various aldehydes in the presence of a base and 

solvent at room temperature yielded the corresponding arylidene cyanoacetamides rapidly and efficiently. The 

formation of cyanoacetamides at room temperature can be attributed to the nucleophilic attack of the amine’s 

amino group on the carbonyl carbon of ethyl cyanoacetate, leading to the substitution of the ethoxy group and 

the formation of an amide bond. This mechanism proceeds via a nucleophilic acyl substitution pathway, 

wherein the amine acts as the nucleophile, displacing the ethoxide ion to generate the intermediate tetrahedral 

species, which subsequently collapses to release ethanol and form the cyanoacetamide product. The absence 

of solvent and external heating in the first step highlights the reaction’s atom economy and energy efficiency, 

aligning with green chemistry principles. The high reactivity of cyclic amines, due to their constrained 

geometry and enhanced nucleophilicity, likely contributes to the rapid conversion and excellent yields 

observed. Furthermore, the mild conditions employed in the subsequent Knoevenagel condensation utilizing 

a base and room temperature reaction demonstrate the versatility and efficiency of this synthetic strategy, 

avoiding harsh conditions that could lead to side reactions or decomposition. This methodology offers a 

practical and scalable route to access structurally diverse heterocyclic frameworks, which are of significant 

interest in medicinal and materials chemistry.  
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The structural confirmation of the synthesized compounds (2-5) was unequivocally established through a 

comprehensive analysis of their ¹H and ¹³C NMR spectra, which exhibited excellent agreement with the 

proposed architectures. The distinct splitting patterns, chemical shifts, and coupling constants observed for 

each compound provided compelling evidence for their respective molecular frameworks, while the absence 

of residual starting material signals underscored the purity of the products. For 2-cyano-N-

cyclohexylacetamide (2), the ¹H NMR spectrum revealed characteristic signals consistent with the cyclohexyl 

ring’s stereochemical heterogeneity. The axial and equatorial protons displayed predictable multiplicities 

(triplet of triplets or doublet of triplets) and chemical shifts, with deshielding effects observed for H2 (δ 3.7 

ppm) due to its proximity to the amide nitrogen. The singlet at δ 3.3 ppm for the CH2 group adjacent to the 

cyano moiety and the downfield NH resonance (δ 6.2 ppm) confirmed the amide formation, further supported 

by the absence of ester-related peaks. The ¹³C NMR spectrum corroborated this assignment, with the carbonyl 

carbon (δ 161.2 ppm) and cyano group (δ 115.4 ppm) appearing at typical shifts for such functionalities. The 

cyclohexyl carbons resonated between δ 24-50 ppm, with C2 (δ 49.5 ppm) notably deshielded due to 

nitrogen’s inductive effect. 

In contrast, the morpholine derivative (3) exhibited simplified splitting patterns, with the methylene protons 

adjacent to the cyano group appearing as a sharp singlet (δ 3.49 ppm). The morpholine ring protons displayed 

distinct shifts influenced by oxygen’s electronegativity (δ 3.45-3.71 ppm), while the ¹³C NMR spectrum 

confirmed the expected seven-carbon framework, including the diagnostic carbonyl (δ 160.8 ppm) and cyano 

(δ 114.4 ppm) signals. For the piperidine-based analogue (4), the ¹H NMR spectrum highlighted the nitrogen’s 

impact on proton shifts, with axial/equatorial distinctions (e.g., δ 3.3 ppm for H1a/H3a vs. δ 3.6 ppm 

for H1e/H3e). The ¹³C NMR spectrum’s seven signals, including the piperidine carbons (δ 24-47 ppm), aligned 

with the proposed structure. Finally, the piperazine-containing compound (5) showed more complex 

multiplicity due to its symmetrical yet conformationally flexible ring. The ¹³C NMR spectrum’s five signals, 

including the carbonyl (δ 162 ppm) and piperazine carbons (δ 41.7-45.6 ppm), further validated the structure. 

Collectively, the NMR data for 2-5 demonstrated remarkable consistency with their predicted structures, with 

key diagnostic signals (e.g., NH, cyano, and carbonyl groups) serving as definitive markers. The absence of 

extraneous peaks confirmed high synthetic efficiency, while the observed chemical shifts and coupling 

patterns reflected the anticipated electronic and steric environments. These findings not only validate the 

successful synthesis of the target compounds but also highlight the utility of NMR spectroscopy in elucidating 

subtle stereochemical and electronic features in heterocyclic systems. 

The synthesis of arylidene cyanoacetamide derivatives via the Knoevenagel condensation reaction between 

cyanoacetamide and various aromatic aldehydes proved to be an efficient and straightforward method for 

carbon-carbon double bond formation. This reaction was successfully carried out under mild conditions (room 

temperature) in a remarkably short time, yielding the desired products with high purity and satisfactory yields 

(70.0%-90.0%). The Knoevenagel condensation mechanism involves the nucleophilic attack of the active 

methylene group in N-substituted cyanoacetamides (2, 3, 4, and 5) on the electrophilic carbonyl carbon of the 

aldehydes (6-8), followed by dehydration to form the corresponding arylidene derivatives (I-IV). The presence 

of electron-donating groups, such as the dimethylamino substituent in aldehydes (7) and (8), likely enhanced 

the electrophilicity of the carbonyl carbon, facilitating the condensation process. Additionally, the extended 

conjugation in cinnamaldehyde (6) contributed to the formation of the dienamide product (IV) with high 

efficiency as shown in scheme (2). The structural elucidation of the synthesized compounds was confirmed 

by ¹H NMR, ¹³C NMR, and other spectroscopic techniques. The NMR spectra exhibited characteristic peaks 

corresponding to the vinylic protons and carbons of the newly formed double bonds, as well as the aromatic 

and amide functionalities, which aligned well with the proposed structures. The high yields and clean reaction 

profiles suggest that this method is both practical and scalable for the synthesis of structurally diverse arylidene 

cyanoacetamides. This work highlights the versatility of the Knoevenagel condensation in constructing α, β-

unsaturated carbonyl systems, which are valuable intermediates in medicinal and materials chemistry. The 

mild reaction conditions, short reaction time, and excellent yields make this approach particularly 

advantageous for further applications in heterocyclic synthesis and drug development (Scheme 2). 
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Scheme 2: Synthesis of arylidene cyanoacetamide derivatives 

 

Conclusion: This study successfully demonstrated an efficient and rapid synthesis of arylidene cyano-

acetamide derivatives via the Knoevenagel condensation of N-substituted cyanoacetamides (2, 3, 4, and 

5) with various aromatic aldehydes (6-8) under mild conditions. The reaction proceeded smoothly, yielding 

the target compounds (I-VI) in high purity with excellent yields (70.0%-90.0%), confirming the robustness of 

this methodology. The structural characterization of the synthesized compounds was unequivocally 

established using ¹H NMR, ¹³C NMR, and Mass spectroscopy, which confirmed the formation of the α, β-

unsaturated carbonyl system through characteristic chemical shifts corresponding to the vinylic and aromatic 

protons. The presence of electron-donating groups on the aldehydes enhanced reactivity, facilitating the 

condensation process and leading to high product yields. This work underscores the significance of 

the Knoevenagel condensation as a powerful tool for C=C bond formation in organic synthesis. The mild 

reaction conditions, operational simplicity, and high efficiency make this approach highly attractive for the 

preparation of structurally diverse arylidene cyanoacetamides, which are valuable intermediates in 

pharmaceutical and materials chemistry. Future studies could explore the biological activity of these 

compounds or further optimize the reaction conditions for industrial-scale applications. Overall, this research 

provides a reliable, scalable, and environmentally friendly synthetic route to arylidene cyanoacetamides, 

contributing to the expanding toolbox of modern synthetic methodologies. 
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